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A three-dimensional Monte Carlo description of the neutral gas 
transport in pipe configurations with almost arbitrary torsion and cur- 
vature is presented. To avoid quadratic or even transcendental expres- 
sions describing the pipe surfaces confining and guiding the neutral 
gas, a decomposition into plane geometrical elements is chosen. 
Furthermore, a combination of the pseudo collision, “pseudo track- 
length,” and of the standard tracklength estimator is introduced. The 
pseudo collision estimator or-mainly for comparison-the pseudo 
tracklength estimator are used in the plasma domain. The standard 
tracklength estimator is employed in the vacuum regions to avoid the 
introduction of an artificially scattering medium there. This estimator 
combination allows us to treat the throat plasma similarly to a 
homogeneous absorbing medium (speeding up the geometrical and 
atomic physics related calculations) and to use the standard track- 
length estimator if the tracklength is to be calculated during particle 
tracing anyway. To reduce the variances, importance sampling is 
applied leading to an exponential 1 D-importance function. The valida- 
tion of the code EOS II is based on a comparison of analytical conduc- 
tances and a simple analytical solution of the neutral gas transport in a 
homogeneous plasma slab with the respective code results. Further- 
more, the results obtained by the pseudo collision estimator are com- 
pared with those of the pseudo tracklength estimator; the equivalence 
of the two estimators in media with strong and weak attenuation is 
demonstrated. In particular it is shown that both estimators may be 
combined with importance sampling. Applications to the pump limiter 
facility ALT-II show the practical expediency of the code. 0 1993 
Academic Press. Inc. 

INTRODUCTION 

Two-dimensional descriptions of the neutral gas trans- 
port in poloidal divertor and limiter scrape off regions and 
in the pumping plenum of pump limiters have been 
attempted already [ 141 employing Monte Carlo methods. 
In these approaches the confining walls have been 
described, as proposed in [S], by quadratic surfaces which 
are to be introduced piecewise by prescribing the respective 
set of coefficients. However, in the case of general pipe con- 
figurations which are used to guide the neutral gas flow, it 
might be more appropriate to choose a parametrization 
which is inherent to the particular geometry of the (in prin- 

ciple transcendental) pipe surfaces. Thus a pipe surface may 
be described by the length of its centerline s, the torsion r(s) 
and the curvature rc(s) of this line as proposed in standard 
textbooks (e.g., [6]). Hence, in this paper a procedure is 
presented in which the parameters s, rc, and t are used to 
define the centerline of pipe surfaces of practical interest. In 
a second step the procedure resorts to a decomposition of 
the pipe surface into quadrangles and triangles. These 
elements, which are comparable to the two-dimensional 
mesh cells used in stress analysis by finite (function) 
elements [7], are plane; as a consequence one normal vec- 
tor per element is sufficient to define the sense of the neutral 
gas region with respect to the confining element and to 
perform the backscattering calculations (Section 4.2). 

Although the number of plane elements necessary to 
describe a given pipe surface is in general larger than the 
number of the more global quadratic surfaces, a vector 
computer scans the plane elements faster and thus tracks 
the particles more efficiently because the calculation is 
performed in vectorizable and unrollable loops (Section 2). 

Since the investigated pipe structures (mainly pump 
limiters), occur also in other vacuum maintaining assem- 
blies, the majority of the methods presented in this paper, in 
particular the procedure for the conductance calculations, 
can be used for quite general purposes. 

As estimators, used for scoring of the macroscopic quan- 
tities during the random walk of the neutrals, the track- 
length [B-l 11, collision [ 111, and the pseudo collision 
[ 1, 111 estimator have been proposed. In the case of the 
tracklength estimator the geometrical calculations might 
become cumbersome, particularly in three-dimensional 
analytically prescribed meshes. If the mesh is obtained 
numerically (e.g., the flux surfaces provided by an equi- 
librium code), the application of the tracklength estimator 
is only feasible if a simple analytical approximation of the 
flux surfaces is available. The geometrical calculations are 
alleviated considerably by applying the pseudo collision 
estimator [ 1 ] which can be used in both optically thick and 
thin regions since the macroscopic attenuation coefficient 
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due to the pseudo medium can be adjusted arbitrarily. Here 
in EOS II the possibility is foreseen that the total density 
composed of the densities of the real and the pseudo 
medium may be larger than the maximum real density. 
(In [l] the total density was limited by the maximum real 
density.) 

A combination of the pseudo collision technique and the 
standard tracklength estimator yields the “pseudo track- 
length estimator.” Although its application needs geometri- 
cal calculations similar to those of the standard tracklength 
estimator, the calculation can resort to a medium with 
constant attenuation length so that the (pseudo or real) 
collision points may be sampled as in the case of the pseudo 
collision estimator. 

In the vacuum region the tracklength estimator is in 
general superior to the pseudo collision estimator since no 
artificial scattering medium needs to be introduced. In the 
particular case envisioned here, the tracklength is computed 
anyway during particle tracking (Section 2.4). 

2. DECOMPOSITION OF THE WALLS 
MAINTAINING THE VACUUM AND 

DEFINING THE PLASMA GEOMETRY 

As demonstrated in Section 3 the main parts of the pump 
limiter assembly can be decomposed into pipes with circular 
or rectangular cross section. Pipe surfaces with circular 
cross section can be generated approximately in two steps: 

1. By moving a sphere along a three-dimensional curve 
r(s) with almost arbitrary curvature and torsion the exact 
pipe surface is described as the envelope of the neighbouring 
spherical surfaces (Fig. 1) [6]; s is the arc length of the 
curve r(s). 

2. The center line r(s) is approximated by a sequence of 
straight lines d rj (Fig. 1) and the pipe surface by a corre- 
sponding sequence of prisms with the cross-sectional shape 
given by regular polygons. The quadrangles building up the 
surfaces of the prisms are the plane elements of the pipe 
surface. 

A somewhat similar procedure is used in the case of rec- 
tangular pipes the geometry of which is less flexible than 
that of the circular pipes (Section 2.2) with almost arbitrary 
torsion angles. This geometry, however, is still adjustable 
enough to describe devices as ALT-II (Section 3). 

The reasons for this procedure are: 

1. The quadrangles, the majority of which turn out to be 
rectangles, can be generated in a simple and systematic way 
prior to the main Monte Carlo calculation. As mentioned 
already, the normal vectors needed for the backscattering 
model can be set up in a prestep rather than computing 
them at each collision of the particle with the wall. 

moving sphere 

+tkee dimensional 
curve as Locus for 
the sphere’s center 

FIG. 1. A general pipe surface (a) may be generated as the envelope of 
a sphere moving along a prescribed 3D curve r(s). The (j+ 1) th pipe 
section is generated in the coordinate system of the jth pipe section. The 
axis (b) of the (j + I)th pipe section is defined with respect to the axis of 
the jth by the angle y(j) standing for the curvature. S(j) is the rotation 
angle of the projection of the axis of the (j + 1) th pipe into the x, y-plane 
of the coordinate system of the jth pipe. 

2. In contrast to the quadratic surfaces [5], the coef- 
ficients of which have complicated transformation proper- 
ties, the transformation of the normal vectors and of the 
corner coordinates can be achieved by simple rotations and 
translations. Furthermore, the intersection lines of the 
quadratic surfaces, in general described by fourth-order 
algebraic equations, are replaced by straight lines. 

3. The intersection points of the particle path with all of 
the planes defined by the quadrangles can be computed in a 
vectorizable loop. The decision of whether or not a specific 
intersection point lies in a certain geometrical element is 
made by summing the angles swept over by the radius vec- 
tor connecting the intersection point with the corners of the 
quadrangle. This can be included in the above-mentioned 
loop without impeding vectorization. In this way the num- 
ber of floating point operations per microsecond achievable 
with a vector computer (“mega flop rate”) can be increased. 
Specific values of the mega flop rate will be given in 
Section 6. The generation of the particle histories is in 
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general not vectorizable because many branches of this fulfilled, the adjacent corners of two subsequent prisms will 
history are possible. not coincide, giving rise to leaks on the top and the bottom 

4. The data of the here-envisaged pipe configurations of each pipe element. 
are reduced to the radii, curvature, and torsion angles, 
defined in the next section, whereas the quadratic surfaces 2.2. Rectangular Pipes 
need in general 10 coefficients [S] each. Moreover, the 
angles in the present configuration (ALT-II) [ 12-151) have 

Since in the case of a rectangular cross section a center of 

trivial values such as 0” or 90”. 
symmetry analogous to that of regular polygons is missing, 
only one arbitrary angle y(j) can be introduced; S(j) 

If a pipe composed of several sections is to be moved must be an integral multiple of 90”. In this way plane pipe 
relative to another pipe, in general six additional constants structures with constant rectangular cross section can be 
are needed for turning and shifting. However, in the case of generated. Besides these plane pipes the more general case 
the example given in Section 3 (ALT-II) only one set of 6(j) = m .90” (m = 0, + 1) and y(j) # 0 may be envisaged. 
pipes (the “scoop” pipes) is to be moved relative to another However, it turns out (Section 3) that pipes with the par- 
one (the “vessel” pipes). ticular choice 6(j) = 0 are of major practical interest. In this 

case, it is possible to change the size of the rectangular cross 
- section. Figure 2 shows the scoop (r(j) = 90’) and the 

2.1. Circular Pipes upper part of the duct of ALT-II (y(j) < 90’) as examples. 

To achieve a decomposition of the pipe surface, the sections The dimension of the scoop may be characterized by the 

Arj which approximate the centerline of the pipe (Fig. la) length of the deflector plate I,= 13.6 cm. As in the case of 

are described by their lengths Asj = 1 A rj 1 and the angles r(j) the circular pipes, all pipes are generated in the respective 

and S(j) defining the direction of the section Arj+I with local system and composed in the system of the first pipe. 

respect to the section Arj (j = 1, . . . . N,); N,, is the total num- 
ber of circular pipes. The local coordinate system of the pipe 2.3. Advanced Geometries 
section with index j, depicted in Fig. 1, is used. The polar 
angle r(j) stands for the curvature and is the inclination If the shape of the cross section of the pipe varies, a proce- 
angle of the section A rj+ 1 with respect to the section Arj; dure analogous to that used with the circular pipes may still 
the azimuthal angle S(j) stands for the torsion and is the be employed if a parametric representation of the curve 
angle between the x-axis and the projection of the section describing the cross section at specific values of the arc 
A rj+ i into the x, y-plane; the x-axis is perpendicular to A rj length s is available. However, in this case in general warped 
and is located in the plane defined by A rj and A rj- i . (twisted) quadrangles are generated; these are divided into 
Analogously, the section Arj+z is defined relative to the triangles to obtain plane elements. Figure 2a shows, as an 
section A rj + , with the new x-axis lying in the plane given example, the wide duct between the oval port at the vacuum 
by Arjand Arj+l. For S(j) = 0, j = 1,2, . . . . N,,, a pipe with vessel of TEXTOR [ 121 and the circular port at the pump- 
a plane centerline is generated. ing plenum of an advanced version of an ALT-II module 

The pipe surface surrounding the centerline is (more details are given in Section 3). The boundary of this 
approximated by NP prisms with the same cross-sectional pipe section is approximated by moving a straight line 
area as the real pipe. In the following mainly decagonal around the axis of symmetry of the wide duct, generating 
prisms are employed. The planes defining the surface of the a regular surface. The decomposition into the twisted 
prisms are generated in the local system of the respective quadrangles is achieved by selecting from the straight lines 
pipe section (Fig. 1). After generating the pipe elements in making up the regular surface those which are connected to 
the respective local systems the pipe is composed in the the adjacent decagonal prism. 
system of the first pipe section by transforming the 
coordinates of the respective prism corners into the system 
of the first pipe section. A change in radius is achieved by 2.4. Mesh Cells 

introducing frusta (truncated cones) between the pipes of To obtain a spatial resolution of the macroscopic 
different radii and by approximating these frusta by the quantities to be scored by the Monte Carlo calculation, 
respective frusta of pyramids. the envisaged volumes must be subdivided into volume 

In Fig. 2 the vacuum vessel of the advanced limiter test elements. Due to the aforementioned approximations of the 
facility ALT-II can be seen as a specific example of a pipe pipe surfaces, the following natural volume elements are 
with varying radius and curvature angle y(j). available: prisms, parallelepipeds, and frusta of pyramids. If 

We note that the torsion angle S(j) must be an integral this mesh turns out to be to coarse, the respective solids may 
multiple of the polygonal angle 27r/N, (N, is the number of be divided further by planes perpendicular to the centerline 
quadrangles building up each prism). If this condition is not of the pipe. The numbering of the volume elements of the 
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FIG. 2. The modules (a) of the pump limiter assembly ALT-II consist in general of scoops with deflector plates DP, the (circular) ducts D and the 
pumping plenums P which may be pumped by a getter pump G and/or a turbopump TP. In one of the modules with the (noncircular) wide duct, the 
cryopump can be used as an option. The deflector plates intercept via the throat entrances TE,,, co- and counterstreaming particles. The scoop (b) has 
an asymmetric shape. The central box is connected to two rectangular graphite pipes in the electron and ion drift direction. The volumes V, and VE, 
are artificial; the planes defining these volumes are marked as penetrable. The modules of ALT-II are specific examples of a general pump limiter design 
(c). This limiter in principle consists of the pump limiter head (H) taking over the main load, the deflector plates (DP) scattering incoming ions as neutral 
particles preferentially into the pump duct which is connected with the pumping plenum (PP). A toroidal “blade” acts as the head in ALT-II. 

vacuum vessel and the duct of ALT-II is displayed in 
Fig. 2a. 

In the case of rectangular pipes a cartesean grid can be 
introduced with the axis of the coordinate system parallel to 
the edges of the pipe. We note that besides a zone boundary 
grid, a zone centered grid is used also, as in lD-transport 
codes [9]. The score of EOS II is associated with the zone 
centered grid. 

Figure 2b gives an example of the cartesean coordinate 
system used in the throat of ALT II. The radial, poloidal, 
and the parallel (to the field lines) directions are given there 
as well. The position of the scoop and duct relative to the 
liner of the tokamak TEXTOR is depicted in Fig. 2a. To 
achieve equal grids on the electron and on the ion sides the 
respective scoops, S, and S,., are completed by artificial 
volumes V,< and VEi comprising small additional parts of 
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the flux bundle in front of the scoop entrances TE, and TE,. 
All planes defining the artificial volumes are marked as 
penetrable so that in the vacuum case the configurations 
with and without the artificial volumes are equivalent. If the 
scoops with plasma are considered, the introduction of VEe 
and V, means an improvement of the description since the 
ionization reactions outside the scoops are partly taken into 
account also. 

Although the particles are tracked in three dimensions, 
no poloidal resolution is attempted since it can be assumed 
that the poloidal dependencies of the neutral gas parameters 
are small. The reason for this assumption is that both 
the sources and the plasma parameters have a negligible 
poloidal dependence as far as the throat volumes are 
concerned. 

A lower bound on the number of the grid points in the 
cartesean mesh results from the maximum tolerable 
standard deviation in the Monte Carlo results. 

3. DESIGN OF PUMP LIMITER ASSEMBLIES 

A generalized pump limiter configuration is shown 
schematically in Fig. 2c. The pump limiter assembly consists 
mainly of the head (H) which absorbs most of the energy 
flux and a considerable part of the particle flux, both 
released by the central core plasma into the scrape off layer 
(SOL), the throat (TH) with the deflector plates (DP), the 
pumping duct (D), and the pumping plenum (PP). The 
throat has the toroidal extension d, and the radial extension 
d,. By means of the deflector plates the impinging ions are 
neutralized and preferentially backscattered into the pump 
duct, either as atoms or as molecules. Thereafter the par- 
ticles may enter the pumping plenum equipped with pumps 
characterized by the pumping speed up; up is accounted for 
by an equivalent sticking probability of the pumping 
surface. 

As a specific example, one module of ALT-II [ 12-151 is 
shown in Fig. 2a. The total assembly consists of eight 
modules. Each module is equipped with an octant of the 
blade which acts as pump limiter head, scoops with the 
deflector plates intercepting co- and counterstreaming par- 
ticles, a duct, and a pumping plenum. Each blade octant has 
a toroidal extension of almost 45”; they are aligned with the 
inner edge at the same radius r,,. Hence the total blade acts 
as a toroidal limiter which is located below the equatorial 
plane of TEXTOR as indicated in Fig. 2a. The radial 
extension of the blade is 2.7 cm. 

The scoop of ALT-II has an asymmetric shape and its 
inner surfaces are shown in more detail in Fig. 2b which 
depicts the decomposition into finite elements and the 
aforementioned Cartesian grid as well. The scoop consists of 
a central box with deflector plates (DP) and rectangular 
graphite pipes in both the electron and ion drift directions. 

EOS II - gcomctrical part 

1. Decomposition of 
circular pipes with prescribed 
curvature, torsion and cross-section 
into plane geometrical elements 
(quadrangles and regular polygons) 

2. Decomposition of 
rectangular pipes with prescribed 
cross-section (scoop + duct) 
into rectangles 

3. Decomposition of 
transcendental pipe surfaces 
into triangles 

4. Define covering planes and 
hole surfaces for the 
transition between pipes of 
different cross-sections 

5. introduce additional elements 
(quadrangles or polygons) 
for the definition of volume elements 

6. store the coordinates of the elements 
and the components of the normals 
in the throat system 

7. provide cartesean grid in the 
throat (radial and toroidal resolution) 

FIG. 3. The geometrical part of the code resorts to a decomposition of 
circular, rectangular and transcendental pipe surfaces into finite plane 
geometrical elements. Additional elements must be introduced to define the 
covering and hole planes needed for the transitions between pipes of 
different cross sections. 

Each graphite pipe and the adjacent part of the box, 
together with one deflector plate, constitute one of the two 
throats with entrance planes TE, and TE,. The neutral- 
plasma interaction takes place in the throats; the plasma 
domain in the throats is divided from the vacuum region by 
the plane P8 (Fig. 2a). 

The pumping plenum is connected with the scoops by a 
duct consisting of two rectangular pipes and one cylindrical 
pipe in the case of the “narrow” duct (Fig. 2a). In this case 
the modules of ALT-II are equipped with a turbomolecular 



probability of the plane TP. The getter consists of an array 
D 1 

of four rectangular modules, the centerlines of which are 
indicated in Fig. 2a. The getter modules effect a reduction of 

S is the length of the particle path, x is the spatial vector of 

the conductance of the pipe between GP, and GP2. This 
the particle, and c,(x) is the total macroscopic attenuation 

reduction is accounted for by an equivalent reduction of the 
coefficient for the neutral particles. In the case of hydrogen 

pipe radius between GP1 and GP,. The pumping speed of 
atoms, this coefficient is computed from the rates for ioniza- 
t* 

the getter modules (up = 4000 liters/s) is taken into account 
ion, charge exchange, and multistep excitation of H,* 

by assigning an equivalent sticking probability to the pipe 
(n = 1, 2, 3), including the transitions 1s --f 2s, 2s + 2p, 
2 

wall between GP, and GP2. One of the modules is equipped 
s-+2p, n= 1 +n=2 (total), and n=2 +n= 3 (total) 

with the “wide” duct (Fig. 2a). Here, the pipe segment 
[18, 193. In the case of hydrogen molecules, Z,(x) is 
obtained from the rate coefficients for molecular dissocia- 

discussed in Section 2.3 is used (adjacent to the plane P5), \tion, molecular dissociative ionization, direct molecular 
giving rise to an improved conductance (Section 6.1). In this 
case, a cryopump may be activated instead of the getter 
pump (Fig. 2a). 

Figure 3 shows a flow chart of the geometrical part of 
EOS-II which is applied to ALT-II. This part is mainly 
based on the decomposition of circular, rectangular, and 
transcendental pipe surfaces into finite plane geometrical 
elements as described in Section 2. Additional planes must 
be introduced to define the coverings and the holes for the 
transitions between pipes of different cross sections and to 
define the volume elements. For the backscattering model 
the components of the normal vectors must be stored and a 
cartesean grid is to be introduced in the throat. 

ionization, molecular ion dissociative recombination, 
molecular ion dissociative excitation, and molecular ion 
dissociative ionization. These processes are described in 
[ 1, 9, 171 in more detail. 

The methane-related modelling is based on the rate coef- 
ficients given in [20]. The contribution to the hydrogen 
deposition and density is computed from the steady-state 
concentrations of CH,, CH,, CH,, CH, CH,+, CH,+, 
CH: , CH + [ 181. The helium reactions accounted for are 
ionization and charge exchange [ 1, 191. 

4.2. Backscattering 

4. MODELLING OF THE NEUTRAL GAS TRANSPORT 
PROCESSES BY MONTE CARLO METHODS 

The performance of pump limiters is mainly determined 
by the plasma-neutral interaction and the backscattering of 
neutral particles at the walls; the treatment of these pro- 
cesses and the scoring of the macroscopic quantities by 
means of estimators is briefly described in the following, 
since the present application of the pseudo collision 
estimators is somewhat different from that in Ref. [ 11. 
Furthermore, the definition of the pseudo tracklength 
estimator is based on both the pseudo collision and the 
tracklength estimators [ 111. More details concerning the 
pseudo collision and standard tracklength estimators are 
given in, e.g., [5, 9-11, 163. 

Backscattering can be described in general by the three- 
dimensional distribution w&E’, 8’, 4’) dependent upon 
the energy E, and the polar angle 0 of the incident particle, 
and the energy E’, the polar and azimuthal angles, 13’ and d’, 
of the backscattered particle [l]. The data obtained 
experimentally or theoretically concern the number back- 
scattering coefficient R,(E), the energy backscattering 
coeflicient R,(E), and the distribution w itself [21-251. 
Here it is assumed that o may be represented in the 
factorized form [9] 

W&E’, 0’3 4’) = R,,(E, ‘3 R,W, 4 E’) So(@, 4’), (4.2.1) 

thus renouncing the assessment of all possible distributions. 
The quantities R,, and RE,, both closely related to R,(E) 
and R,(E), may account for the results obtained by the 
MARLOWE code [22] or for those presented in [23]. 

4.1. Neutral-Plasma Interaction 

The random walk of the neutrals in an infinite plasma 
volume is determined by the likelihood for absorption, 
which may be coupled to the creation of new neutral 
particle species (e.g., dissociation). The influence of the 
walls where important sources and sink may be located is 
discussed later. In an inhomogeneous plasma the density 

The distribution S8(8’, 4’) describes in general the tran- 
sition from specular to diffuse reflection according to 
Ref. [ 11. The cosine distribution can be used instead as an 
option. In particular in the case of the here-envisaged 
graphite deflector plates, strong erosion processes yield a 
rough surface favouring the assumption S,(cos(&)) N 
cos(8’) [9]. 

Since a special backscattering model of graphite which is 
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pump which is mounted at the plane TP of the pumping function for the likelihood of a real collision is given by 
plenum. Furthermore, a getter pump can be activated. This [S, 9-11,161 
pump is located between the planes GP, and GP,. The 
pumping speed of the turbomolecular pump is roughly s 
up = 3000 liters/s and is simulated by an equivalent sticking a(x) = Z;,(x) exp - ds’ Z,(x(s’)) ; (4.1.1) 

0 
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dominated by porosity [26] is not available, we model for the random walk a = (x,, x2, . . . . x,);. x1, x2, . . . . xk are 
backscattering at graphite walls by a reduction of the the collision points. In the case of the ionization rate, the 
particle backscattering coefficient R,, in (4.2.1), thus density, and the pressure we have 
accounting for enhanced sticking which leads to the release 
of molecules. Comparison of calculations with different 
reduction factors shows that the sensitivity of the results el(x 
with respect to changes of RP, is small. Therefore all calcula- 
tions in Sections 5 and 6 are performed with the number 
backscattering coefficient of Ref. [9] accounting for dif- e2(x 

ferent target materials, e.g., carbon or iron. and 

ci(x) )=Q- 
z;‘*(x) v 

4.3. Estimators 

The scoring of macroscopic quantities (e.g., density, 
pressure) during the random walk of the neutrals is equiv- 
alent to solving the Boltzmann equation for the angular flux 
density of neutral particles [ 161. Here, mainly the pseudo 
collision [ 1, 111 and the tracklength estimator [S, 83 are 
used. A proof of the equivalence of the two estimators is 
given in [27]. 

The pseudo collision estimator may be understood as 
a collision estimator used in a medium with artificially 
enhanced attenuation (“pseudo medium”). In [ 1 ] the 
maximum attenuation coefficient for the point with the 
minimum mean free path length is employed in the total 
plasma region. This procedure, however, is in general only 
applicable if l/(C,),,, is of the order of the extension of the 
smallest mesh cell, so that a sufficient number of events may 
take place in each mesh cell. We note that this condition 
is only necessary and that a combination of the pseudo 
collision technique with importance sampling is needed to 
obtain a sufficiently large and roughly equal number of 
events in each mesh cell. 

The estimators are employed to evaluate in volume V a 
quantity 

E,=S gi( x, v) !P(x, v) dx dv (4.3.1) 

within error limits characterized by the standard deviations 
inherent to the statistical method. x denotes a point in 
ordinary space and v a point in velocity space, where 

fw, v) = Id m, v) 

is the angular neutral flux density and gi(x, v) Iv1 is the 
quantity, the momentum of which is to be computed by 
means of the distribution functionf(x, v); e.g., gi is given by 
gi = l/lvl in the case of density and gi = $rn Iv1 in the case of 
scalar pressure. In a first step only real collisions are con- 
sidered; the effect of the pseudo medium is discussed later. 
The unbiased estimator for (4.3.1) is then given by [ 111 

Vi(a)= t ei(%) (4.3.2) 

(4.3.3) 

(4.3.5) 

respectively. V is the volume in which the collisions take 
place and Q is the source strength per second. Zi(x) is the 
macroscopic attenuation coefficient due to ionization only. 
The contribution of a single collision in a particular volume 
element d Vj is then 

Ve&J (i,j=~X(Avj)G 
I 

x(d Vi) is equal to unity if X,E AVj and equal to zero 
otherwise. Analogous to Eq. (4.3.2), the estimator for the 
ionization rate, the density, and the pressure (i= 1, 2, 3, 
respectively), scored in the volume element AVj, is the sum 
over all collision points x,. 

If the pseudo medium is introduced, the real collision 
probability which distinguishes real collisions from pseudo 
collisions is 

R(x,) = z:,(xi) 

~A%) + qxi 

(4.3.7) 

L’, is the total real reaction rate. The pseudo collision rate 
Z, may be chosen such that the total reaction rate 
Z, =Z,+ ZP is constant. In this case the integrand in 
Eq. (4.1.1) becomes constant and sampling from the prob- 
ability density (4.1.1) is greatly simplified. Here we use 

c, = (~rLl,x . CL. (4.3.8) 

An estimate of p is given by 

d is the smallest extension of the mesh cells Vi. A strong 
variance reduction is achieved if the pseudo collision 
estimator [ 1 ] 

rl,(a) = i R(x,) ei(x,) 
m=l 

(4.3.10) 
??I=1 
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is used instead of (4.3.2). R is the above-mentioned real 
collision likelihood. The random walk c1 comprises real 
collisions and pseudo collision points. At the pseudo colli- 
sion points the particle’s weight, energy, and direction are 
left unchanged. At each real collision point xi the weight of 
the particle is reduced by the factor 1 - Zi(xi)/C,(x,), and 
a new velocity is taken from a Maxwellian with the 
temperature of the plasma background. 

The estimator (4.3.2) can be used also if a pseudo medium 
is superimposed. In the sum over the collision points, 
however, the pseudo collision points must be skipped. If the 
pseudo attenuation coefficient .ZP is increased, the distances 
between successive pseudo collisions become shorter and 
the pseudo collision estimator becomes equivalent to the 
tracklength estimator for infinitely large Z, [ll]. In this 
case the unbiased estimator for (4.3.1) reads 

v?(a)= i e,*b,, x,+1) 4x,, x,+1); (4.3.11) 
m=l 

4x,, Xm+l ) is the tracklength between the collision points 
x, and x,+1. The functions er(x, y) are given by 

e*(x y)=Q'i(X+Y) 
1 3 V 

Q 
eT(x9 y, = Iv(x + y)I v 

e;(x 9 y) = Q Iv(x + y)I m 
3v 

(4.3.14) 

for the ionization rate, density, and pressure, respectively. 
Ci(x + y) and v(x + y) are the ionization attenuation 
coefficient and the speed along the path of the particle 
going from x to y. The contribution of the path length 
4%?z, x,+ 1 ) to a particular volume element d Vj is 

l:j= 
VeiW, x1) A ,. 

A Vj rn,J’ 

A,,j is the part of the tracklength d(x,, x,+ i) inside the 
volume element A Vi and xi, x4 are the intersection points of 
the path x, + x, + i with the surface of the volume element 
AVj. Analogous to Eq. (4.3.1 l), the estimator for the ioniza- 
tion rate, the density, and the pressure (i = 1,2, 3) scored in 
the volume element AVj, is the sum over all tracklengths 
4%m JL+1)- 

We note that in (4.3.12) the simplifying assumption is 
introduced that Zi(x + y) is constant along the path x + y. 
If this is not the case, e:(x, y) is to be replaced by [S] 

e*(x y)=QS1:zi(s)ds. 
1 9 

v 4x9 y) ’ 

i.e., the respective estimator q,? scores the mean ionization 
rate in the volume V. Since the size of AVj may be chosen 
such that the relative variation AZi/L’i is small compared to 
unity, the average value ( .Z’i)A ‘(i can be employed. We note 
that for the pseudo collision estimator the local attenuation 
rates are used exclusively. 

Instead of scoring the contribution of the tracklength 
between two successive real collisions, the contributions 
(4.3.12~(4.3.14) along the sections of the path between two 
successive pseudo collisions may be scored as well (“pseudo 
tracklength estimator”). 

Since in the statistical average the tracklengths sampled 
by means of the pseudo collision technique are the same as 
those sampled from the density (4.1.1) directly, the con- 
tributions to the score of a particular volume element is 
computed by means of the same expression (4.3.15). 

In case of the pseudo tracklength estimator the absorbing 
medium can be treated as a homogeneous medium. Thus 
compared to the application of the tracklength estimator 
(in, e.g., [S]) the sampling of the collision points is 
alleviated considerably. 

4.4. Importance Sampling 

The main disadvantage of the distribution (4.1.1) is its 
roughly exponential decrease with increasing distance from 
the source point. This implies a high variance at large dis- 
tances if a simple analog method is used. To avoid this, split- 
ting and Russian roulette are applied [S, 83. A generaliza- 
tion of this technique not depending on prescribed splitting 
surfaces and resorting to a general “importance function” is 
described, e.g., in [9]. In the slab geometry used here a 
simple exponential importance function (Section 5.2) is 
applied. This forces the tracklengths for (Monte Carlo) 
particles travelling away from the deflector plate to 
become longer than those in the simple analogue case; for 
the particles moving in the opposite direction the contrary 
holds. 

The weight and the mean particle number are adjusted at 
a collision such that unbiased results are obtained. 

The flow chart of the Monte Carlo part of the EOS II 
(Fig. 4) has as a central part the routine for tracking 
particles inside the pipe surfaces. If a (pseudo) collision 
takes place, the pseudo collision estimator may be applied 
and the contributions to the density pressure and the source 
terms are scored. 

The tracklength between two collision points is decom- 
posed, and the contributions to the respective mesh cells are 
scored if the pseudo tracklength estimator is used. 

These estimators are applied in the throat region only. 
The score in the duct and the pumping plenum is obtained 
by means of the standard tracklength estimator. As in [9] 
importance sampling is applied at the real collision points. 

In the case of a real collision the particle’s weight is 
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T- ’ 

trace atoms or 
molecules in the throat - 
or in the vessel meshs 

. 
backscattering 
pumping 

I 

. 
score escaping flux next (split?) particle 

FIG. 4. The Monte Carlo part has as its central part the routine tracking particles inside the pipe surfaces. If a neutral-plasma collision takes place, 
the contribution to the density, pressure, and the source terms is scored. In the case of a real collision the weight of the particle is reduced. Alternatively, 
the contribution of the tracklength to the respective mesh cells may be scored. In the vacuum only this possibility exists. 

reduced. If the weight becomes smaller than a certain limit For conductance calculations the hit or miss method is 
(10e4. W,, with W, as initial weight), the particle is killed applied and the scoring is switched off. 
by the next ionization event. In case of a collision with 
a confining surface element the backscattering model is 4.5. Conductance Calculations 

applied or the escaping flux is scored. After working The conductance of a pipe structure is essentially given by 
through all split particles the next particle is started. the transmission probability defined by the confining walls 
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and two planes a and b at the upstream and downstream 
ends respectively [28, 291. The transmission probability is 
the likelihood that a particle started at a plane a with a 
uniform distribution over a and a cosine distribution in 
velocity space, reaches b without returning to a. Thus the 
transmission probability may be obtained by counting the 
“successful” particles. 

The conductance is related to the transmission probabil- 
ity tp(a + b) by [28] 

L = 62.265 
- tp(a + b) S, 
JM [ 1 & (liters/s). (4.51) 

S, is the area of the launching plate divided by cm2 and M 
is the molecular mass divided by AMU = 1.66055 10-24g. 
An obvious consequence of Eq. (4.5.1) is 

r,(a+b)=;t,(b+a). 
a 

(4.5.2) 

This relation can be used as a consistency check. 

5. CODE VALIDATION 

In the following a comparison of an analytical 
approximation to the conductance of a cylindrical pipe 
[28] with the Monte Carlo solution is presented. Neutral 
gas flow through a plasma slab as an absorbing medium 
is envisioned since in this case an analytical solution is 
available if simplifying assumptions are introduced. 

5.1. Comparison with Analytical Conductances 

To check the Monte Carlo procedure in general and the 
backscattering model in particular, the transmission 
probabilities of straight cylinders computed by the Monte 
Carlo method are compared with those obtained from 
analytical theory [28,29]. Table I shows the dependence of 
the transmission probability on the aspect ratio A, defined 
here as the ratio of the length to the pipe radius. The 

TABLE I 

Transition Probabilities of Cylindrical Pipes with Different 
Aspect Ratio 

A tp (Monte-Carlo) fp (Clausing) t, (Dushmann) 

10 0.1932 0.1973 0.1962 
7 0.2481 0.2537 0.2759 
5 0.3119 0.3149 0.3478 

Note. The Monte Carlo results are compared with the analytical results 
of Clausing and Dushmann. 

(quadratic) cylindrical surface was accounted for exactly. 
The Monte Carlo results, the standard deviations of which 
are below 10P3, agree with the analytical results to within 
2%. The reason for this deviation is that the analytical 
results themselves have an inaccuracy of up to 2% due to 
the approximations in [28]. 

To check the approximation of the cylinders by prisms, 
the transmission probability of a straight cylinder (A = 10 in 
Table I) is compared with that of prisms having the same 
cross-sectional area but different cross-sectional shapes. 
Table II shows that the prism with a decagonal cross section 
almost has the same transmission probability as the 
corresponding cylinder. 

5.2. Comparison with a Simple Analytical Solution 
Concerning the Neutral Gas Flow through a Plasma Slab 

Now we consider a plasma slab, defined essentially by 
an upstream and a downstream plane. A simple analytical 
solution is available for particles travelling through 
a homogeneous plasma slab. The plasma density is 
n, = 5 x 10i2/cm3, and the electron and ion temperatures are 
T, = Ti = 20 eV. Only ionization is taken into account. The 
speed vector is assumed to be the same for all particles and 
to be perpendicular to the upstream plane. Simple analytical 
considerations yield an exponential decay for the density 
and the deposition profile. Comparison with the Monte 
Carlo results shows that these results deviate from the 
analytical solution at most by 5% without importance 
sampling and by 2.5% with importance sampling. An 
exponential importance function depending on the distance 
from the upstream plate and with the e-folding length 
approximately equal to the mean free path length of the 
neutrals was employed. At high density (n, = 10i3/cm3) and 
low density (n, = 5 x 10”/cm3) similar standard deviations 
are obtained. 

5.3. Comparison with Results Obtained by Means of the 
Pseudo-Tracklength Estimator 

The comparison with the analytical profile suffers from 
the fact that all particle paths are straight lines per- 

TABLE II 

Transition Probabilities of Prismatical Pipes 

Cross section tp (Monte Carlo) 

Decagon 0.1951 
Octagon 0.1975 
Hexagon 0.2039 
Square 0.2235 

Note. The approximation by decagonal prisms provides an accuracy 
of 1%. 
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pendicular to the upstream plane, since charge exchange is 
ignored. Here, we take charge exchange into account and 
compare results obtained by different estimators. The par- 
ticles released at the upstream side are sampled in ordinary 
space from a distribution and in velocity space from a cosine 
distribution. 

Both the pseudo tracklength estimator and the pseudo 
collision estimator yield neutral gas densities which agree 
within the order of the standard deviations. Generalized 
splitting and Russian roulette based on the aforementioned 
importance function were applied. 

5.4. Consistency Checks 

The consistency of the calculation may be checked by the 
particle and energy conservation of the neutral particles 
within each volume element of the pump limiter assembly or 
within larger units composed by several volume elements. 
Here we concentrate on the total volume of the assembly 
composed of the throat, the duct, and the pumping plenum. 
One atomic species and its corresponding (diatomic) 
molecular species are considered. The flux balances for the 
atoms and molecules read 

and 

(5.4.2) 

respectively. agO is the source current of atoms composed of 
the current released at the deflector plates and the current 
due to dissociation of the molecules. Analogously, Dgm is 
the source current of molecules composed of the current 
released at the deflector plates and the current duG to 
recombination at the walls. @pl,(,j are the atomic 
(molecular) currents absorbed by the plasma, @,+, those 
lost at the throat entrances and QPocrn, the pumped currents. 
#*a is the atomic flux lost due to recombination at the walls, 
and Qdm is the molecular flux lost by dissociation. By adding 
Eqs. (5.4.1) and (5.4.2), an equation may be obtained 
relating the ion current Qin to the deflector plate directly to 
the lost, pumped, and absorbed currents, @, = QrO + 2@,m, 
Qp = QpO + 20,, @, = Dpl, + 2@,,m, respectively, 

@in = @I + @p + @p/e (5.4.3) 

Thus, the recombination and dissociation fluxes (which 
are not absorbed or pumped) are eliminated from the 
expressions (5.4.1) and (5.4.2). 

The calculations concerning ALT-II given in the next 
section show that the relative deviations between the RHS 
and the LHS of Eqs. (5.4.1), (5.4.2), and (5.4.3) are less 
than 5 x 10e3. 

TABLE III 

Dependence of the Mega Flop Rate MF, the Number of Tracked 
Particles Np on the Number of Surfaces n, 

Cray option n, s,,(%) Np MF 

Scalar operation 10 0.55 135200 6.1 
Vector operation 20 0.42 214100 28.5 
Vector operation 40 0.45 177300 43.5 
Vector operation 60 0.48 150300 54.8 
Vector operation 80 0.53 124500 60.3 

Note. In case of vectorized operation MF saturates at around 
MF = 60. 

6. APPLICATIONS 

These calculations consider the evaluation of con- 
ductances and neutral gas parameters in the throat and 
the pumping plenum of ALT-II. For the computations an 
IBM 3090 computer interacting with an MVS (multiple 
virtual storage) batch system and a CRAY X-MP computer 
interacting with a UNICOS 5 batch system were employed. 

6.1. Conductances of Pipes with Constant Curvature and 
Torsion 

As pointed out in Section 2 a general pipe structure may 
be characterized by the arc length, the curvature K, and the 
torsion z of the centerline. Here we envisage pipes with 
constant curvature and torsion, i.e., helical pipes. The 
working gas is deuterium. 

The calculations show, that the conductance is almost 
independent of the torsion. If the curvature of a pipe with 
length Z, = 100 cm and radius rp = 25 cm varies from 
K = 0.2 m- ’ to K = 0.4 m ~ ‘, the transmission probability 
decreases by 15%. This is much larger than the standard 
deviation of 1%. 

The numerical advantage due to vectorized algorithms in 
the case of plane geometrical elements is demonstrated in 
Table III. A cylindrical pipe (I, = 100 cm and rp = 10 cm) 
was decomposed into n, = NJ, plane geometrical elements 

TABLE IV 

ALT-II Related Conductances 

L(a -B b) (liters/s) *P a b 

739 0.1770 DP TP 
546 0.1310 DP TE,, TE, 
500 0.0719 p, TE,, TE, 
341 0.0218 TP TE,, TE, 
352 0.1140 TE,, TE, TP 

Nore. The conductance between the deflector plates and the scoop 
entrances is 26% smaller than that between the deflector plates and 
turbopump. 
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(N, is defined in Section 2.1 and N, is the number of sub- 
divisions on axis). In the case of 10 elements (first row of 
Table III) the conductance was computed by scalar 
operations exclusively. The mega flop rate, defined in 
Section 2, is MF = 6.1. 

In all other cases the calculations were based on vector 
operations. The mega flop rate increases monotonically 
until the maximum value 60.3 is reached. 

The number of Monte Carlo particles processed on the 
CRAY during a constant CPU time decreases from 214,100 
to 124,500 as n, increases from 20 to 80, and the standard 
deviation sd of the transmission probability increases 
accordingly. The conductance obtained in the case of 
n, = 20 is L = 1900 liters/s. 

The table shows that the scalar calculation with 10 
elements is equivalent to the analogous vector calculations 
for 80 elements, because they arrive at approximately the 
same standard deviation of the transmission probability. 
Since the complicated quadratic surfaces can only be treated 
by scalar operations which are even more time consuming 
than in the case of planes, these results show the improve- 
ment of the computational speed due to vectorization. 

6.2. ALT-II Related Conductances 

These calculations were based on ALT-II data (Fig. 2). 
The working gas is deuterium. Table IV summarizes 
the ALT-II related conductances and transmission 
probabilities; the maximum standard deviation of these 
quantities is below 3 %. The meaning of the symbols denot- 
ing the planes a for launching the particles and the target 
plane b is given in Fig. 2a. The table shows that the trans- 

T /b=O 

b=O8 

b=O 

b-0 

I 
I I I I I * 

2 4 6 8 10 
U$ (A) 

FIG. 5. The fraction&, absorbed by the plasma increases, the fraction 
f, escaping via the throat entrances decreases and the pumped fraction f, 
decreases as well (slowly, however) with increasing collected plasma 
current BP (backstreaming ratio b = 0). For b =0.8, f, increases with 
increasing @, . 

mission probability from the deflector plates to the throat 
entrances is only 26 % smaller than that from the deflector 
plates to the turbo pump, thus showing the efficacy of the 
scoops. The conductance L(TP -+ TE,, TE,) between the 
turbo pump and the throat entrances was computed as well 
and checked with the conductance L( TE,, TE, + TP). 
Although the transmission probabilities differ strongly, the 
conductances agree within the margin of the standard 
deviation. 

Consequences of the conductances in Table IV are the 
effective pumping speeds [29] of the turbopump and the 
throat entrances (simulated by a sticking probability ps = 1 
at the entrance planes) at the deflector plates; they are 600 
and 470 liters/s, respectively. These results show that 
particles starting at the deflector plates are preferentially 
pumped rather than lost. 

The conductance L(P, + TE,, TE,) is 10% larger than 
the experimental one. This discrepancy might be due to 
probes in the throat which reduce the available cross 
section. 

6.3. Particle Removal Rate and Neutral Gas Parameters in 
ALT-II 

The configurations depicted in Figs. 2a and b of the 3D- 
geometry of ALT-II are used in the following. The results 
are mainly for ALT-II with narrow duct and turbo pump, 
since experimental data are available only for this case. 

To account for the experimentally observed [13] 
significantly different radial decay lengths of the plasma 
density in the electron and ion side scoops, we assume 
1, = 2 cm and li= 1.5 cm. Thus, the densities are 
n,i = n,~,i exp( -r/&); not, are the maximum densities. The 
electron and ion temperatures in both scoops are assumed 
tobeT,=Ti=lOeV. 

The starting points of the emerging atoms or molecules 
are sampled from a two-dimensional distribution along the 
deflector plates, the radial dependence of which is given by 
the ion flux density [ 133 r,,i = 0.5n,iv, computed from the 
plasma parameters. 0, - N Jm is approximately 
the ion sound speed. Here, mi is the ion mass. The currents 
collected in the electron and ion side scoops are 
@,i = e, j$ r,,i dr; d, is the radial extension of the scoop; e. 
is the elementary charge; as a consequence the collected 
currents are given in amperes. The total collected flux is 
@*t = @, + Qi. A uniform distribution is assumed in the 
poloidal direction. The species index and the energy of 
the released particles are sampled according to the back- 
scattering model of Section 4.2. The parameters of this 
model are as in Ref. [23]. The polar angle is sampled from 
a cosine distribution. As indicated by the experimental 
results, @, = Qi is assumed in the following. 

Concomitant with the assessment of the particle removal 
rate, the neutral pressure distribution in the vacum vessel, 
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the neutral gas parameters, and the ion source rate in the 
throat are computed. The dependence of the pumped frac- 
tion (removal efficiency)& = @JQin, the fraction absorbed 
by the plasma fp,= Opl/@i,, and the fraction lost at the 
throat entrances, fr= @,/Qi,,, on the total collected ion 
current ap is given in Fig. 5. The figure shows that the 
pumped fraction approaches 40% if Qi,, is reduced to 1 A. 
At Qin = 10 A about one-half of the collected current is 
absorbed by the plasma and the other half is pumped or lost 
at the throat entrances in almost equal parts. The fraction 
absorbed by the plasma may stream backward to the 
deflector plates thus giving rise to a “vortex” flux inside 
the plasma circling between the plasma and the deflector 
plates. The curve marked by b = 0.8 is the pumped fraction 
computed by the simple approach in [14]; b is the back- 
streaming ratio. The fraction f, (b = 0.8) increases slowly 
with increasing ap. This trend is compatible with the 
experimental results. 

The following results belong to the case with Dp = 10 A. 
Figure 6 shows the deposition distribution H (proportional 
to the plasma source distribution and normalized such that 
its mean value is the deposited fraction) due to the 
molecular reactions in the throat volume. Toroidal and 
radial resolution is chosen because the poloidal dependence 
can be expected to be negligible. The distribution has 
a pronounced peak at y = 0.21 cm, x = 30.85 cm ( -d,) 
because along this line both the flux density of the released 

X max ~30.85 cm 
Xmin = 1.74 cm 
Y mx = 2.29 cm 
Y,i” = 021 cm 

FIG. 6. Deuterons due to absorption of molecules are preferentially 
deposited in the vicinity of the deflector plate at smaller radii because both 
the flux density of released molecules and the plasma density have their 
maxima there. 

particles and the plasma density have their maxima. (We 
note that the aforementioned point belongs to the zone 
centered grid (Section 2.4), whereas y = 0, x = d, belongs to 
the zone boundary grid.) The deposition distribution due to 
the atoms reveals an analogous behaviour. The deposited 
deuteron current is only 40% of that due to the molecular 
reactions. 

In Fig. 7 the molecular density n,, is displayed. The maxi- 
mum is at the same toroidal position as in the case of the 
deposition profiles. The radial dependence, however, is 
much weaker. The reason is the relation no2 - H/( (cm) n,) 
with the rate coefficient (00 ); so, the decrease of the deposi- 
tion profile is compensated by the decrease in the electron 
density. 

The maximum molecular pressure in the pipe is 
pD2 =0.26 mtorr; it is reached in the pipe element with 
the index i = 7 (Fig. 2a). The pressure decreases to 
poz = 0.075 mtorr in the pipe element with i = 1 where the 
pump is attached. This pressure corresponds to a removal 
efficiency of around 25 %. 

f, increases to 0.37 if the narrow duct (Fig. 2a) is replaced 
by the wide duct because the conductance L(DP -+ TP) = 
740 liters/s rises by 30%. The closely related conductance 
L(DP + P5) increases from 1100 liters/s in case of the 
narrow duct to 1550 liters/s in case of the wide duct. If in 
addition to the turbopump the cryopump with the pumping 
speed v,, = 6000 liters/s is used, f, becomes f, = 0.45. 

/ 
Y km) X max ~30.85 cm 

Knin = 1.74 cm 
Y max = 2.29 cm 

Yrnin = 0.21 cm 

FIG. 7. The density distribution of the molecules peaks at the plates as 
well; the radial dependence, however, is much weaker than that of the 
deposition distribution in Fig. 6 because of the radial decay of the electron 
density. 
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CONCLUDING REMARKS 

The results demonstrate that the geometrical part of the 
EOS-II code provides the ability to describe the structure of 
vacuum maintaining assemblies which in practice prefer- 
entially resort to pipe configurations, in a simple and 
straightforward way. In particular the decomposition of the 
pipe configurations into plane geometrical elements adapts 
the calculation to a vector computer, increasing the 
computational speed considerably. 

The estimators are adjusted to the specific regions envi- 
sioned. In the vacuum region the standard tracklength 
estimator is used; it is particularly well-suited to mesh cells 
resulting from the decomposition of the pipe configurations 
into plane geometrical elements. In the plasma region, 
the pseudo collision estimator or the pseudo tracklength 
estimator is employed; both resort to a medium with con- 
stant attenuation length in spite of the spatially dependent 
plasma parameters. Although the scoring techniques of the 
latter estimators are quite different, the results agree well for 
cartesean grids. This applies to both optically thick and 
optically thin media. 

Whereas the application of the pseudo collision estimator 
may be easily extended to numerically prescribed meshes, 
that of the pseudo tracklength estimator is restricted in the 
present approach to cartesean grids but may be extended to 
grids based on polar coordinates as well. 
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